[1]张来福 尹云厚*.细胞脂滴的物理结构及影响其稳定的因素[J].现代农业研究,2019,(10):115-120.
 Zhang Laifu Yin Yunhou*.The physical structure of cell fat droplets and the factors affecting their stability are summarized[J].Modern Agricultural Research,2019,(10):115-120.
点击复制

细胞脂滴的物理结构及影响其稳定的因素
分享到:

《现代农业研究》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年10期
页码:
115-120
栏目:
生物科学
出版日期:
2019-10-15

文章信息/Info

Title:
The physical structure of cell fat droplets and the factors affecting their stability are summarized
作者:
张来福2 尹云厚1*
1 贵州民族大学550025;2 延边大学133002
Author(s):
Zhang Laifu2 Yin Yunhou1*
1 Guizhou university for nationalities 550025;2 Yanbian University 133002
关键词:
脂滴结构稳定乳液
Keywords:
lipid droplet structure stable emulsion
摘要:
脂滴是储存中性脂质的细胞器,对能量代谢至关重要,它们广泛存在于存在于动物、植 物、真菌,甚至细菌中。脂滴是油包水乳液在细胞水溶液中的分散相,乳液的基本生物物理原理 对于脂滴生物学的重要性正在被人们所重视。由于其存在于分散油相和水胞质之间的独特结 构,其形成,生长和收缩的具体机制尤为复杂,这种机制使细胞能够在代谢能量或膜合成需求发 生变化时使用乳化油,有利于为细胞新陈代谢提供更有利的途径。此外,脂滴表面的磷脂作为 表面活性剂组成的调控对脂滴的稳态和表面蛋白靶向至关重要。在这里,我们回顾脂滴的乳液 结构及其在
Abstract:
Lipid droplets are organelles that store neutral lipids, which are essential for energy metab? olism. They are widely found in animals, plants, fungi and even bacteria.Lipid droplet is the dis? persed phase of oil-in-water emulsion in aqueous cell solution.Due to its unique structure between dispersed oil phase and hydrocytoplasm, the specific mechanism of its formation, growth and contrac? tion is particularly complex. This mechanism enables cells to use emulsion oil when metabolic ener? gy or membrane synthesis demand changes, which is conducive to providing a more favorable path? way for cell metabolism.In addition, the regulation of phospholipids on the surface of lipid droplets as surfactant composition is crucial to lipid droplet homeostasis and surface protein targeting. Here, we review the structure of lipid droplets and their mechanisms of intracellular stabilization, and brief? ly describe the latest developments in this emerging field.

参考文献/References:

[1] D.J. Murphy, The dynamic roles of intracellular lipid droplets: from archaea to mammals, Protoplasma 249 (2012) 541-585. [2] T.C. Walther, R.V. Farese Jr., Lipid droplets and cellular lipid metabolism, Annu. Rev. Biochem. 81 (2012) 687-714. [3] A.R. Thiam, R.V. Farese Jr., T.C. Walther, The biophysics and cell biology of lipid droplets, Nat. Rev. Mol. Cell Biol. 14 (2013) 775-786. [4] N. Kory, R.V. Farese Jr., T.C. Walther, Targeting fat: mechanisms of protein localization to lipid droplets, Trends Cell Biol. 26 (2016) 535-546. [5] F. Wilfling, J.T. Haas, T.C. Walther, R.V. Farese Jr., Lipid droplet biogenesis, Curr. Opin. Cell Biol. 29 (2014) 39-45. [6] A. Pol, S.P. Gross, R.G. Parton, Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites, J. Cell Biol. 204 (2014) 635-646. [7] J. Yu, P. Li, The size matters: regulation of lipid storage by lipid droplet dynamics, Sci. China Life Sci. 60 (2017) 46-56. [8] R. Zechner, R. Zimmermann, T.O. Eichmann, S.D. Kohlwein, G. Haemmerle,A. Lass, F. Madeo, FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling, Cell Metab. 15 (2012) 279-291. [9] J. Kerner, C. Hoppel, Fatty acid import into mitochondria, Biochim. Biophys. Acta 1486 (2000) 1-17. [10] S. Eaton, Control of mitochondrial beta-oxidation flux, Prog. Lipid Res. 41 (2002) 197-239. [11] N. Krahmer, R.V. Farese Jr., T.C. Walther, Balancing the fat: lipid droplets and human disease, EMBO Mol. Med. 5 (2013) 973-983. [12] R.P. Kuhnlein, Thematic review series: lipid droplet synthesis and metabolism: from yeast to man. Lipid droplet-based storage fat metabolism in Drosophila, J. Lipid Res. 53 (2012) 1430-1436. [13] E.L. Arrese, F.Z. Saudale, J.L. Soulages, Lipid droplets as signaling platforms linking metabolic and cellular functions, Lipid Insights 7 (2014) 7-16. [14] H.F. Hashemi, J.M. Goodman, The life cycle of lipid droplets, Curr. Opin. Cell Biol. 33 (2015) 119-124. [15] M.A. Welte, Expanding roles for lipid droplets, Curr. Biol. 25 (2015) R470-481. [16] S. D'Andrea, Lipid droplet mobilization: the different ways to loosen the purse strings, Biochimie 120 (2016) 17-27. [17] A.R. Kimmel, C. Sztalryd, The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis, Annu. Rev. Nutr. 36 (2016) 471-509. [18] M.R. Schneider, Beyond the adipocyte paradigm: heterogeneity of lipid droplets and associated proteins, Exp. Cell Res. 340 (2016) 171. [19] O. Shatz, P. Holland, Z. Elazar, A. Simonsen, Complex relations between phospholipids, autophagy, and neutral lipids, Trends Biochem. Sci. 41 (2016) 907-923. [20] C.W. Wang, Lipid droplets, lipophagy, and beyond, Biochim. Biophys. Acta 1861 (2016) 793-805. [21] Thiam, A. R. et al. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. Proc. Natl Acad. Sci. USA 110,13244-13249 (2013). [22] Chen, Z. & Rand, R. P. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys. J. 73, 267-276 (1997). [23] Chernomordik, L. V. & Kozlov, M. M. Protein-lipid inter-play in fusion and fission of biological membranes.Annu. Rev. Biochem. 72, 175-207 (2003). [24] Koestler, D. C. et al. Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics http://dx.doi. org/10.4161/ epi.25430 (2013). [25] Bremond, N., Thiam, A. R. & Bibette, J. Decompressing emulsion droplets favors coalescence. Phys. Rev. Lett. 100, 024501 (2008). [26] Thiam, A. R., Bremond, N. & Bibette, J. Breaking of an emulsion under an ac electric field. Phys. Rev. Lett. 102, 188304 (2009). [27] Bremond, N. & Bibette, J. Exploring emulsion science with microfluidics. Soft Matter 8, 10549-10559(2012). [28] Aarts, D. G., Schmidt, M. & Lekkerkerker, H. N. Direct visual observation of thermal capillary waves. Science 304, 847-850 (2004). [29] Leikin, S., Kozlov, M. M., Fuller, N. L. & Rand, R. P.Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71, 2623- 2632 (1996). [30] De Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves (Springer, 2004). [31] Karatekin, E. et al. Cascades of transient pores in giant vesicles: line tension and transport. Biophys. J.84, 1734-1749 (2003). [32] Biswas, S., Yin, S. R., Blank, P. S. & Zimmerberg, J.Cholesterol promotes hemifusion and pore widening in membrane fusion induced by influenza hemagglutinin. J. Gen. Physiol. 131, 503-513 (2008). [33] Shemesh, T., Luini, A., Malhotra, V., Burger, K. N. & Kozlov, M. M. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys. J. 85, 3813-3827 (2003). [34] Fernandez-Ulibarri, I. et al. Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway. Mol. Biol. Cell 18, 3250-3263 (2007). [35] Popoff, V., Adolf, F., Brugger, B. & Wieland, F.COPI budding within the Golgi stack. Cold Spring Harb. Perspect. Biol. 3, a005231 (2011). [36] Kabalnov, A. & Weers, J. Kinetics of mass transfer in micellar systems: surfactant adsorption, solubilization kinetics, and ripening. Langmuir 12, 3442-3448(1996). [37] Kabalnov, A. S. Can micelles mediate a mass transfer between oil droplets? Langmuir 10, 680-684 (1994). [38] Ariyaprakai, S. & Dungan, S. R. Influence of surfactant structure on the contribution of micelles to Ostwald ripening in oil-in-water emulsions. J. Colloid Interface Sci. 343, 102- 108 (2010). [39] Baret, J. C. Surfactants in droplet-based microfluidics. Lab Chip 12, 422-433 (2012). [40] Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618-622 (2003). [41] J.K. Zehmer, Y. Huang, G. Peng, J. Pu, R.G. Anderson, P. Liu, A role for lipid droplets in inter-membrane lipid traffic, Proteomics 9 (2009) 914-921. [42] N. Laibach, J. Post, R.M. Twyman, C.S. Gronover, D. Prufer, The characteristics and potential applications of structural lipid droplet proteins in plants, J. Biotechnol. 201 (2015) 15-27. [43] G.J. Blomquist, A.-G. Bagneres, Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology, Cambridge University Press, Cambridge, 2010. [44] R. Makki, E. Cinnamon, A.P. Gould, The development and functions of oenocytes, Annu. Rev. Entomol. 59 (2014) 405- 425. [45] N.A. Herman, W. Zhang, Enzymes for fatty acid-based hydrocarbon biosynthesis, Curr. Opin. Chem. Biol. 35 (2016) 22-28. [46] A. Peramuna, R. Morton, M.L. Summers, Enhancing alkane production in cyanobacterial lipid droplets: a model platform for industrially relevant compound production, Life (Basel) 5 (2015) 1111-1126. [47] M. Valachovic, M. Garaiova, R. Holic, I. Hapala, Squalene is lipotoxic to yeast cells defective in lipid droplet biogenesis, Biochem. Biophys. Res. Commun. 469 (2016) 1123- 1128. [48] S. Yamashita, H. Yamaguchi, T. Waki, Y. Aoki, M. Mizuno, F. Yanbe, T. Ishii, A. Funaki, Y. Tozawa, Y. Miyagi-Inoue, K. Fushihara, T. Nakayama, S. Takahashi, Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis, elife 5 (2016). [49] G. Bauer, S.N. Gorb, M.C. Klein, A. Nellesen, M. von Tapavicza, T. Speck, Comparative study on plant latex particles and latex coagulation in Ficus benjamina, Campanula glomerata and three Euphorbia species, PLoS One 9 (2014) e113336. [50] W. Chang, M. Zhang, S. Zheng, Y. Li, X. Li, W. Li, G. Li, Z. Lin, Z. Xie, Z. Zhao, H. Lou, Trapping toxins within lipid droplets is a resistance mechanism in fungi, Sci Rep 5 (2015) 15133. [51] K.M. Sandoz, W.G. Valiant, S.G. Eriksen, D.E. Hruby, R.D. Allen 3rd, D.D. Rockey, The broad-spectrum antiviral compound ST-669 restricts chlamydial inclusion development and bacterial growth and localizes to host cell lipid droplets within treated cells, Antimicrob. Agents Chemother. 58 (2014) 3860-3866. [52] S.E. Verbrugge, M. Al, Y.G. Assaraf, S. Kammerer, D.M. Chandrupatla, R. Honeywell, R.P. Musters, E. Giovannetti, T. O'Toole, G.L. Scheffer, D. Krige, T.D. de Gruijl, H.W. Niessen, W.F. Lems, P.A. Kramer, R.J. Scheper, J. Cloos, G. J. Ossenkoppele, G.J. Peters, G. Jansen, Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR, Oncotarget 7 (2016) 5240-5257. [53] H. Sandermann Jr., Differential lipid affinity of xenobiotics and natural compounds, FEBS Lett. 554 (2003),165-168. [54] G. Murphy Jr., R.L. Rouse, W.W. Polk, W.G. Henk, S.A. Barker, M.J. Boudreaux, Z.E. Floyd, A.L. Penn, Combustionderived hydrocarbons localize to lipid droplets in respiratory cells, Am. J. Respir. Cell Mol. Biol. 38 (2008),532-540. [55] S. Bourez, S. Le Lay, C. Van den Daelen, C. Louis, Y. Larondelle, J.P. Thome, Y.J. Schneider, I. Dugail, C. Debier, Accumulation of polychlorinated biphenyls in adipocytes: selective targeting to lipid droplets and role of caveolin-1, PLoS One 7 (2012) e31834.

相似文献/References:

[1]关秀辉.调整作物结构的几个问题[J].现代农业研究,2017,(11):62.
[2]张舟怡.植物细胞的结构与功能分析[J].现代农业研究,2019,(1):50.
 Zhang Zhouyi.Structural and functional Analysis of Plant cells[J].Modern Agricultural Research,2019,(10):50.
[3]张来福 尹云厚*.脂滴的生物物理学和细胞生物学研究[J].现代农业研究,2019,(11):90.
 Zhang Laifu Yin Yunhou *.Biophysics and cell biology of lipid droplets[J].Modern Agricultural Research,2019,(10):90.
[4]刘亚红 夏刚 付志超 樊永强.试探新时期城固柑橘品种结构调整和优化[J].现代农业研究,2019,(12):68.
 Liu Yahong Xia Gang Fu Zhichao Fan Yongqiang.To explore the structural adjustment and optimization of chenggu citrus varieties in the new period[J].Modern Agricultural Research,2019,(10):68.
[5]王春丽.林业产业结构升级对国有林场改革绩效的影响[J].现代农业研究,2021,(2):79.

备注/Memo

备注/Memo:
* 基金项目:贵州省科技计划项目(黔科合基础[2018]1073)。 作者简介:张来福,男,汉族,黑龙江鸡西人,延边大学,硕士,主要从事动物营养方面研究。地址吉林省延吉 市延边大学科技楼601,电话18943705542,邮箱741841200@qq.com。 通讯作者:尹云厚,男,汉族,江西永新人,贵州民族大学,博士,副教授,主要从事动物营养方面研究。地址 贵州省贵阳市花溪区保利溪湖,电话13595143449,邮箱yuhouyin@xinlang.com。
更新日期/Last Update: 1900-01-01